

Welcome to repomate’s documentation!

If you are new to repomate, the Fundamentals and
repomate User Guide sections are must-reads. Developers looking to modify
or utilize the core functionality in ways the CLI does not allow will be best
served by looking at the Module Index.

Please open an issue and tag it with the docs tag for any bugs or missing
information.

Contents:

	Fundamentals
	Philosophy and Goals

	Terminology

	Conventions

	Install
	Requirements

	Option 1: Install from PyPi with pip

	Option 2: Clone the repo and the install with pip

	repomate User Guide
	Getting Started (the verify-settings, migrate and setup commands)

	Updating Student Repositories (the update command)

	Opening and Closing issues (the open-issue and close-issue commands)

	Cloning Repos in Bulk (the clone command)

	Configuration
	REPOMATE_OAUTH Environment Variable

	Configuration File

	repomate Module Reference
	abstract_api_wrapper

	command

	cli

	config

	exception

	github_api

	git

	pygithub_wrapper

	tuples

	util

Indices and tables

	Index

	Module Index

	Search Page

Fundamentals

repomate is an opinionated tool for managing large amounts of GitHub
repositories for higher education courses. It was created as a result of the
old teachers_pet [https://github.com/education/teachers_pet] tool not fulfilling our every desire, as well as GitHub’s
migration over to the browser based GitHub Classroom [https://classroom.github.com/], which did not quite
strike our fancy. repomate is essentially a newer (and hopefully better)
version of teachers_pet, written in Python (which is commonly used at KTH)
instead of Ruby (which is barely used at all).

Philosophy and Goals

The primary goal of repomate is to lower the entry level for incorporating
git and GitHub into higher education coursework, hopefully opening up
the wonderful world of version control to teachers who may not be subject
experts (and to their students). As such, repomate is firmly seated in the
convention over configuration camp, favoring highly opinionated workflows that
are easy to get started with, rather than highly configurable ones. The target
audience is primarily teachers seeking to incorporate git and GitHub
into their courses, but lack the time or expertise to build their own
automation system from scratch.

Note

Is there a difference between git and GitHub? Yes! git is the
version control system, and GitHub is a company that hosts git
servers on github.com, and provides enterprise software for hosting
your own GitHub instances. The terms are often intermixed, but the
distinction is important.

Terminology

Some terms occur frequently in repomate and are best defined up front.
Some of the descriptions may not click entirely before reading the
repomate User Guide section, so quickly browsing through these definitions and
re-visiting them when needed is probably the best course of action.

	Target organization: The GitHub Organization [https://help.github.com/articles/about-organizations/] related to the current course
round.

	Master repository: Or master repo, is a template repository upon which
student repositories are based.

	Student repository: Or student repo, refers to a copy of a master repo
for some specific student.

	GitHub instance: A hosted GitHub service. This can be for example
https://github.com or any Enterprise host.

Conventions

The following conventions are fundamental to working with repomate.

	For each course and course round, use one Organization [https://help.github.com/articles/about-organizations/].

	Any user of repomate has unrestricted access to the target organization
(i.e. is an owner).

	Master repositories should be available as private repositories in the
target organization (using local repos on the current machine is also ok
and generally works well).

	Master repositories are added to the master_repos team.

	Student repositories are copies of the default branches of the master
repositories (i.e. --single-branch cloning is used by default). That is,
until students make modifications.

	Student repositories are named <username>-<master_repo_name> to guarantee
unique repo names.

	Each student is assigned to a team with the same name as the student’s
username. It is the team that is granted access to the repositories, not
the student’s actual user.

	Student teams have push access to the repositories, but not
administrative access (i.e. students can’t delete their own repos).

Note

Few of these conventions are actually enforced, and there are ways around
almost every single one. However, with the exception of the one
organization per course round convention, which must be ensured manually,
repomate will automatically adhere to the other conventions. Although
repomate does adhere to the conventions, there is no way to stop users
from breaking them using e.g. the GitHub web interface, manually performing
master repo migrations etc. Straying form the conventions may cause
repomate to behave unexpectedly.

Install

Requirements

repomate requires Python 3.5+ and a somewhat up-to-date version of git.
Officially supported platforms are Ubuntu 17.04+ and OSX, but
repomate should run fine on any Linux distribution and also on WSL [https://docs.microsoft.com/en-us/windows/wsl/install-win10] on
Windows 10. Please report any issues with operating systems and/or git
versions on the issue tracker.

Option 1: Install from PyPi with pip

Important

Not yet available on PyPi, go with clone repo instead!

The latest release of repomate is on PyPi, and can thus be installed as usual with pip.
I strongly discourage system-wide pip installs (i.e. sudo pip install <package>), as this
may land you with incompatible packages in a very short amount of time. A per-user install
can be done like this:

	Execute pip install --user repomate to install the package.

	Further steps to be added …

Option 2: Clone the repo and the install with pip

If you want the dev version, you will need to clone the repo, as only release versions are uploaded
to PyPi. Unless you are planning to work on this yourself, I suggest going with the release version.

	
	Clone the repo with git:

	
	git clone https://github.com/slarse/repomate

	cd into the project root directory with cd repomate.

	
	Install the requirements with pip install -r requirements.txt

	
	To be able to run the tests, you must install the requirements.test.txt file.

	
	Install locally with pip.

	
	pip install --user ., this will create a local install for the current user.

	Or just pip install . if you use virtualenv.

	For development, use pip install -e . in a virtualenv.

repomate User Guide

Contents:

	Getting Started (the verify-settings, migrate and setup commands)
	Create an Organization

	Configure repomate For the Target Organization

	Verify Settings

	Migrate Master Repositories Into the Target Organization

	Setup Student Repositories

	Updating Student Repositories (the update command)
	Scenario 1: Repos are Unchanged

	Scenario 2: At Least 1 Repo Altered

	Opening and Closing issues (the open-issue and close-issue commands)
	Opening Issues

	Closing Issues

	Cloning Repos in Bulk (the clone command)

Getting Started (the verify-settings, migrate and setup commands)

Important

This guide assumes that the user has access to a bash shell, or is
tech-savvy enough to translate the instructions into some other shell
environment.

The basic workflow of repomate is best described by example. In this section,
I will walk you through how to set up an Organization [https://help.github.com/articles/about-organizations/] with master and student
repositories by showing every single step I would perform myself. The basic
workflow can be summarized in the following steps:

	Create an organization (the target organization).

	Configure repomate for the target organization.

	Verify settings.

	Migrate master repositories into the target organization.

	Create one copy of each master repo for each student.

There is more to repomate, such as opening/closing issues, updating student
repos and cloning repos in batches, but here we will just look at the bare
minimum to get started. Now, let’s delve into these steps in greater detail.

Create an Organization

This is an absolutely necessary pre-requisite for using repomate.
Create an organization with an appropriate name on the GitHub instance you
intend to use. You can find the New organization button by going to
Settings -> Organization. I will call my target organization
repomate_demo, so whenever you see that, substitute in the name of your
target organization.

Important

At KTH, we most often do not want our students to be able to see each
others’ repos. By default, however, members have read access to all
repos. To change this, go to the organization dashboard and find your way
to Settings -> Member privileges. At the very bottom, there should be a
section called Default repository permission. Set this to None to
disallow students from viewing each others’ repos unless explicitly given
permission by an organization owner (e.g. you).

Configure repomate For the Target Organization

For the tool to work at all, an environment variable called REPOMATE_OAUTH
must contain an OAUTH2 token to whichever GitHub instance you intend to use.
See the GitHub OAUTH docs [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] for how to create a token. The token should have
the repo and admin:org scopes. Setting the token is easy in bash.
Just add the following line to your bash config file (~/.bashrc on most
Linux distros, and ~/.bash_profile on OSX).

export REPOMATE_OAUTH=<SUPER SECRET TOKEN>

When that’s added, either source the file with source path/to/bash/config
or simply start another bash shell, which will automatically read the
file. Verify that the token is there by typing:

$ echo $REPOMATE_OAUTH

You should see your token in the output.

Note

Whenever you see a $ sign preceeding a line in a code block, you are meant
to type what’s after the $ sign into your shell. Here, you should type
only echo $REPOMATE_OAUTH, for example.

With that out of the way, let’s create a configuration file We can now use
repomate to figure out where it should be located.

$ repomate -h
[INFO] no config file found. Expected config file location: /home/USERNAME/.config/repomate/config.cnf

<HELP MESSAGE OMITTED>

At the very top, you will find the expected config file location. The exact
path will vary depending on operating system and username. Let’s add a
configuration file with the following contents:

[DEFAULTS]
github_base_url = https://some-enterprise-host/api/v3
user = slarse
org_name = repomate-demo

Now, you need to substitute in some of your own values in place of mine.

	
	Enter the correct url for your GitHub instance. There are two options:

	
	If you are working with an enterprise instance, simply replace
some-enterprise-host with the appropriate hostname.

	If you are working with github.com, replace the whole url
with https://api.github.com.

	Replace slarse with your GitHub username.

	Replace repomate-demo with whatever you named your target organization.

That’s it for configuration, and we can check that the file is correctly found
and parsed by running repomate -h again.

$ repomate -h
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

<HELP MESSAGE OMITTED>

The [INFO] config file defaults: message (along with the defaults) will pop
up on every repomate command. I should note that the configuration file
isn’t strictly necessary, but it will save us the hassle of typing in the url,
username and organization name on every single command to repomate.

Verify Settings

Now that everything is set up, it’s time to verify all of the settings. Given
that you have a configuration file that looks something like the one above,
you can simply run the verify-settings command without any options.

$ repomate verify-settings
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] verifying settings ...
[INFO] trying to fetch user information ...
[INFO] SUCCESS: found user slarse, user exists and base url looks okay
[INFO] verifying oauth scopes ...
[INFO] SUCCESS: oauth scopes look okay
[INFO] trying to fetch organization ...
[INFO] SUCCESS: found organization test-tools
[INFO] verifying that user slarse is an owner of organization repomate-demo
[INFO] SUCCESS: user slarse is an owner of organization repomate-demo
[INFO] GREAT SUCCESS: All settings check out!

If any of the checks fail, you should be provided with a semi-helpful error
message. When all checks pass and you get GREAT SUCCESS, move on to the
next section!

Migrate Master Repositories Into the Target Organization

This step sounds complicated, but it’s actually very easy, and can be performed
with a single repomate command. There is however a pre-requisite that must
be fulfilled. You must either

	Have local copies of your master repos.

or

	Have all master repos in the same GitHub instance as your target organization.

Assuming we have the repos master-repo-1 and master-repo-2 in the
current working directory (i.e. local repos), all we have to do is this:

$ repomate migrate -mn master-repo-1 master-repo-2
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] created team master_repos
[INFO] cloning into file:///some/directory/path/master-repo-1
[INFO] cloning into file:///some/directory/path/master-repo-2
[INFO] created repomate-demo/master-repo-1
[INFO] created repomate-demo/master-repo-2
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/master-repo-2 master
[INFO] done!

There are a few things to note here. First of all, the team master_repos is
created. This only happens the first time migrate is run on a new
organization. As the name suggests, this team houses all of the master repos.
Each master repo that is migrated with the migrate command is added to this
team, so they can easily be found at a later time. It may also be confusing that
the local repos are being cloned (into a temporary directory). This is simply
an implementation detail that does not need much thinking about. Finally, the
local repos are pushed to the master branch of the remote repo. This command
is perfectly safe to run several times, in case you think you missed something.
Running the same thing again yields the following output:

$ repomate migrate -mn master-repo-1 master-repo-2
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] cloning into file:///some/directory/path/master-repo-1
[INFO] cloning into file:///some/directory/path/master-repo-2
[INFO] repomate-demo/master-repo-1 already exists
[INFO] repomate-demo/master-repo-2 already exists
[INFO] pushing, attempt 1/3
[INFO] https://some-enterprise-host/repomate-demo/master-repo-1 master is up-to-date
[INFO] https://some-enterprise-host/repomate-demo/master-repo-2 master is up-to-date
[INFO] done!

In fact, all repomate commands that deal with pushing to or cloning from
repos in some way are safe to run over and over. This is mostly because of
how git works, and has little to do with repomate itself. Now that
our master repos are migrated, we can move on to setting up the student repos!

Note

The migrate command can also be used to migrate repos from somewhere
on the GitHub instance into the target organization. To do this, use the
-mu option and provide the urls, instead of -mn with local paths.
For example, given a repo at
https://some-enterprise-host/other-org/master-repo-1, it can be
migrated into repomate-demo by typing

$ repomate migrate -mu https://some-enterprise-host/other-org/master-repo-1

Setup Student Repositories

Now that the master repos have been added to the target organization, it’s time
to create the student repos. While student usernames can be specified on the
command line, it’s often convenient to have them written down in a file
instead. Let’s pretend I have three students with usernames spam, ham
and eggs. I’ll simply create a file called students.txt and type each
username on a separate line.

spam
ham
eggs

I want to create one student repo for each student per master repo. The repo
names will be on the form <username>-<master-repo-name>, guaranteeing their
uniqueness. Each student will also be added to a team (which bears the same
name as the student’s user), and it is the team that is allowed access to the
student’s repos, and not the student’s actual user. That all sounded fairly
complex, but again, it’s as simple as issuing a single command with
repomate.

$ repomate setup -mn master-repo-1 master-repo-2 -sf students.txt
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] cloning into master repos ...
[INFO] cloning into file:///home/slarse/tmp/master-repo-1
[INFO] cloning into file:///home/slarse/tmp/master-repo-2
[INFO] created team eggs
[INFO] created team ham
[INFO] created team spam
[INFO] adding members eggs to team eggs
[WARNING] user eggs does not exist
[INFO] adding members ham to team ham
[INFO] adding members spam to team spam
[INFO] creating student repos ...
[INFO] created repomate-demo/eggs-master-repo-1
[INFO] created repomate-demo/ham-master-repo-1
[INFO] created repomate-demo/spam-master-repo-1
[INFO] created repomate-demo/eggs-master-repo-2
[INFO] created repomate-demo/ham-master-repo-2
[INFO] created repomate-demo/spam-master-repo-2
[INFO] pushing files to student repos ...
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/ham-master-repo-2 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/ham-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/spam-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/eggs-master-repo-2 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/eggs-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/spam-master-repo-2 master

Note that there was a [WARNING] message for the username eggs: the user
does not exist. At KTH, this is common, as many (sometimes most) first-time
students will not have created their GitHub accounts until sometime after the
course starts. These students will still have their repos created, but the
users need to be added to their teams at a later time (for example with the
repomate add-to-teams command). This is one reason for why we use teams for
access privileges: it’s easy to set everything up even when the students have
yet to create their accounts (given that their usernames are pre-determined).

And that’s it, the organization is primed and the students should have access
to their repositories!

Updating Student Repositories (the update command)

Sometimes, we find ourselves in situations where it is necessary to push
updates to student repositories after they have been published. As long as
students have not started working on their repos, this is fairly simple:
just push the new files to all of the related student repos. However, if
students have started working on their repos, then we have a problem.
Let’s start out with the easy case where no students have worked on their
repos.

Scenario 1: Repos are Unchanged

Let’s say that we’ve updated master-repo-1, and that users spam,
ham and eggs should get the updates. Then, we simply run
update like this:

$ repomate update -mn master-repo-1 -s spam eggs ham
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] cloning into master repos ...
[INFO] cloning into https://some-enterprise-host/repomate-demo/master-repo-1
[INFO] pushing files to student repos ...
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/spam-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/eggs-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/ham-master-repo-1 master
[INFO] done!

That’s all there is to it for this super simple case. But what if ham had
started working on ham-master-repo-1?

Note

Here, -s spam eggs ham was used to directly specify student usernames on
the command line, instead of pointing to a students file with -sf
students.txt. All commands that require you to specify student usernames
can be used with either the -s|--students or the -sf|--students-file
options.

Scenario 2: At Least 1 Repo Altered

Let’s assume now that ham has started working on the repo. Since we do not
force pushes (that would be irresponsible!) to the student repos, the
push to ham-master-repo-1 will be rejected. This is good, we don’t want to
overwrite a student’s progress because we messed up with the original
repository. There are a number of things one could do in this situation, but
in repomate, we opted for a very simple solution: open an issue in the
student’s repo that explains the situation.

Important

If we don’t specify an issue to repomate update, rejected pushes will
simply be ignored.

So, let’s first create that issue. It should be a Markdown-formatted file, and
the first line in the file will be used as the title. Here’s an example
file called issue.md.

This is a nice title

Sorry, we messed up!
There are some grave issues with your repo, and since you've pushed to the
repo, you need to apply these patches yourself.

<EXPLAIN CHANGES>

Something like that. If the students have used git for a while, it may be
enough to include the ouptut from git diff, but for less experienced
students, plain text is more helpful. Now it’s just a matter of using
repomate update and including issue.md with the -i|--issue argument.

$ repomate update -mn master-repo-1 -s spam eggs ham -i issue.md
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] cloning into master repos ...
[INFO] cloning into https://some-enterprise-host/repomate-demo/master-repo-1
[INFO] pushing files to student repos ...
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/spam-master-repo-1 master
[INFO] Pushed files to https://some-enterprise-host/repomate-demo/eggs-master-repo-1 master
[ERROR] Failed to push to https://some-enterprise-host/repomate-demo/ham-master-repo-1
return code: 128
fatal: repository 'https://some-enterprise-host/repomate-demo/ham-master-repo-1/' not found
[WARNING] 1 pushes failed ...
[INFO] pushing, attempt 2/3
[ERROR] Failed to push to https://some-enterprise-host/repomate-demo/ham-master-repo-1
return code: 128
fatal: repository 'https://some-enterprise-host/repomate-demo/ham-master-repo-1/' not found
[WARNING] 1 pushes failed ...
[INFO] pushing, attempt 3/3
[ERROR] Failed to push to https://some-enterprise-host/repomate-demo/ham-master-repo-1
return code: 128
fatal: repository 'https://some-enterprise-host/repomate-demo/ham-master-repo-1/' not found
[WARNING] 1 pushes failed ...
[INFO] Opening issue in repos to which push failed
[INFO] Opened issue ham-master-repo-1/#1-'Nice title'
[INFO] done!

Note that repomate tries to push 3 times before finally giving up and
opening an issue. This is because pushes can fail for other reasons than
rejections, such as timeouts and other network errors.

Note

If you forget to specify the -i|--issue argument and get a rejection,
you may simply rerun update and add it. All updated repos will
simply be listed as up-to-date, and the rejecting repos will still
reject the push! However, be careful not to run update with -i
multiple times, as it will then open the same issue multiple times.

Opening and Closing issues (the open-issue and close-issue commands)

Sometimes, the best way to handle an error in a repo is to simply notify
affected students about it. This is especially true if the due date for the
assignment is rapidly approaching, and most students have already started
modifying their repositories. Therefore, repomate provides the
open-issue command, which can open issues in bulk. When the time is right
(perhaps after the deadline has passed), issues can be closed with the
close-issue command.

Opening Issues

The open-issue command is very simple. Before we use it, however, we need
to write a Markdown-formatted issue. Just like with the update command, the
first line of the file is the title. Here is issue.md:

An important announcement

Dear students
I have this important announcement to make.

Regards,
The Announcer

Awesome, that’s an excellent issue. Let’s open it in the master-repo-2 repo
for our dear students spam, eggs and ham, who are listed in the
students.txt file (see Setup Student Repositories).

$ repomate open-issue -mn master-repo-2 -sf students.txt -i issue.md
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] Opened issue spam-master-repo-2/#1-'An important announcement'
[INFO] Opened issue eggs-master-repo-2/#1-'An important announcement'
[INFO] Opened issue ham-master-repo-2/#1-'An important announcement'

From the output, we can read that in each of the repos, an issue with the title
An important announcement was opened as issue nr 1 (#1). The number
isn’t that important, it’s mostly good to note that the title was fetched
correctly. And that’s it! Neat, right?

Closing Issues

Now that the deadline has passed for master-repo-2, we want to close the
issues opened in open. The close-issue command takes a regex that runs
against titles. All issues with matching titles are closed. While you can
make this really difficult, closing all issues with the title An important
announcement is simple: we provide the regex \AAn important announcement\Z.

$ repomate close-issue -mn master-repo-2 -sf students.txt -r '\AAn important announcement\Z'
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] closed issue spam-master-repo-2/#1-'An important announcement'
[INFO] closed issue eggs-master-repo-2/#1-'An important announcement'
[INFO] closed issue ham-master-repo-2/#1-'An important announcement'

And there we go, easy as pie!

Note

Enclosing a regex expression in \A and \Z means that it must match
from the start of the string to the end of the string. So, the regex used here
will match the title An important announcement, but it will not
match e.g. An important anouncement and lunch or Hey An important
announcement. In other words, it matches exactly the title An important
announcement, and nothing else. Not even an extra space or linebreak is
allowed.

Cloning Repos in Bulk (the clone command)

It can at times be beneficial to be able to clone a bunch of student repos
at the same time. It could for example be prudent to do this slighly after
a deadline, as timestamps in a git commit can easily be altered (and are
therefore not particularly trustworthy). Whatever your reason may be, it’s
very simple using the clone command. Again, assume that we have the
students.txt file from Setup Student Repositories, and that we want to clone all student
repos based on master-repo-1 and master-repo-2.

$ repomate clone -mn master-repo-1 master-repo-2 -sf students.txt
[INFO] config file defaults:

 github_base_url: https://some-enterprise-host/api/v3
 user: slarse
 org_name: repomate-demo

[INFO] cloning into student repos ...
[INFO] Cloned into https://some-enterprise-host/repomate-demo/spam-master-repo-1
[INFO] Cloned into https://some-enterprise-host/repomate-demo/ham-master-repo-1
[INFO] Cloned into https://some-enterprise-host/repomate-demo/ham-master-repo-2
[INFO] Cloned into https://some-enterprise-host/repomate-demo/eggs-master-repo-1
[INFO] Cloned into https://some-enterprise-host/repomate-demo/spam-master-repo-2
[INFO] Cloned into https://some-enterprise-host/repomate-demo/eggs-master-repo-2

Splendid! That’s really all there is to it, the repos should now be in your
current working directory.

Configuration

repomate must be configured with a mandatory environment variable (see
oauth). Additionally, some of the command line parameters can be
pre-configured with e.g. the GitHub instances’ API url and the target
organization’s name (see config).

REPOMATE_OAUTH Environment Variable

For the tool to work at all, an environment variable called REPOMATE_OAUTH
must contain an OAUTH2 token to whichever GitHub instance you intend to use.
See the GitHub OAUTH docs [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] for how to create a token. The token should
have the repo and admin:org scopes. Once you have the token, you should
set the environment variable. In a bash terminal, this can be done with the
command export REPOMATE_OAUTH=<YOUR TOKEN>, where <YOUR TOKEN> is
replaced with the token.

Configuration File

An optional configuration file can be added, which specifies default values for
the –github_base_url, –org_name, –user and –students-list command
line options. This is especially useful for teachers who are managing repos for
a single course (and, as a consequence, a single organization).

[DEFAULTS]
github_base_url = https://some-api-v3-url
user = YOUR_USERNAME
org_name = ORGANIZATION_NAME
students_file = STUDENTS_FILE_ABSOLUTE_PATH

To find out where to place the configuration file (and what to name it),
run repomate -h. At the very top, there should be a line looking something
like this:

[INFO] no config file found. Expected config file location: /home/USERNAME/.config/repomate/config.cnf

The filepath at the end is where you should put your config file.

Important

Do note that the configuration file contains only default values. Specifying
any of the parameters on the command line will override the configuration
file’s values.

Note

You can run repomate verify-settings to verify the basic configuration.
This will check all settings but the students file.

repomate Module Reference

abstract_api_wrapper

command

cli

config

exception

github_api

git

pygithub_wrapper

tuples

util

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to repomate’s documentation!

 		
 Fundamentals

 		
 Philosophy and Goals

 		
 Terminology

 		
 Conventions

 		
 Install

 		
 Requirements

 		
 Option 1: Install from PyPi with pip

 		
 Option 2: Clone the repo and the install with pip

 		
 repomate User Guide

 		
 Getting Started (the verify-settings, migrate and setup commands)

 		
 Create an Organization

 		
 Configure repomate For the Target Organization

 		
 Verify Settings

 		
 Migrate Master Repositories Into the Target Organization

 		
 Setup Student Repositories

 		
 Updating Student Repositories (the update command)

 		
 Scenario 1: Repos are Unchanged

 		
 Scenario 2: At Least 1 Repo Altered

 		
 Opening and Closing issues (the open-issue and close-issue commands)

 		
 Opening Issues

 		
 Closing Issues

 		
 Cloning Repos in Bulk (the clone command)

 		
 Configuration

 		
 REPOMATE_OAUTH Environment Variable

 		
 Configuration File

 		
 repomate Module Reference

 		
 abstract_api_wrapper

 		
 command

 		
 cli

 		
 config

 		
 exception

 		
 github_api

 		
 git

 		
 pygithub_wrapper

 		
 tuples

 		
 util

_static/up-pressed.png

_static/up.png

_static/plus.png

